

Confuse: painless YAML config files

[image: _images/badge.svg]
 [https://github.com/beetbox/confuse/actions][image: _images/confuse.svg]
 [https://pypi.python.org/pypi/confuse]Confuse is a configuration library for Python that uses YAML [http://yaml.org/]. It takes
care of defaults, overrides, type checking, command-line integration,
environment variable support, human-readable errors, and standard OS-specific
locations.

What It Does

Here’s what Confuse brings to the table:

	An utterly sensible API resembling dictionary-and-list structures
but providing transparent validation without lots of boilerplate
code. Type config['num_goats'].get(int) to get the configured
number of goats and ensure that it’s an integer.

	Combine configuration data from multiple sources. Using
layering, Confuse allows user-specific configuration to seamlessly
override system-wide configuration, which in turn overrides built-in
defaults. An in-package config_default.yaml can be used to
provide bottom-layer defaults using the same syntax that users will
see. A runtime overlay allows the program to programmatically
override and add configuration values.

	Look for configuration files in platform-specific paths. Like
$XDG_CONFIG_HOME or ~/.config on Unix; “Application Support” on
macOS; %APPDATA% on Windows. Your program gets its own
directory, which you can use to store additional data. You can
transparently create this directory on demand if, for example, you
need to initialize the configuration file on first run. And an
environment variable can be used to override the directory’s
location.

	Integration with command-line arguments via argparse [http://docs.python.org/dev/library/argparse.html] or optparse [http://docs.python.org/dev/library/optparse.html]
from the standard library. Use argparse’s declarative API to allow
command-line options to override configured defaults.

	Include configuration values from environment variables. Values undergo
automatic type conversion, and nested dicts and lists are supported.

Installation

Confuse is available on PyPI [https://pypi.org/project/confuse/] and can be installed
using pip:

pip install confuse

Using Confuse

Confuse’s documentation [http://confuse.readthedocs.org/en/latest/usage.html] describes its API in detail.

Credits

Confuse was made to power beets [https://github.com/beetbox/beets].
Like beets, it is available under the MIT license [http://www.opensource.org/licenses/mit-license.php].

Confuse: Painless Configuration

Confuse [https://github.com/beetbox/confuse] is a straightforward, full-featured configuration system
for Python.

Basic Usage

Set up your Configuration object, which provides unified access to
all of your application’s config settings:

config = confuse.Configuration('MyGreatApp', __name__)

The first parameter is required; it’s the name of your application, which
will be used to search the system for a config file named config.yaml.
See Search Paths for the specific locations searched.

The second parameter is optional: it’s the name of a module that will
guide the search for a defaults file. Use this if you want to include a
config_default.yaml file inside your package. (The included
example package does exactly this.)

Now, you can access your configuration data as if it were a simple
structure consisting of nested dicts and lists—except that you need to
call the method .get() on the leaf of this tree to get the result as
a value:

value = config['foo'][2]['bar'].get()

Under the hood, accessing items in your configuration tree builds up a
view into your app’s configuration. Then, get() flattens this view
into a value, performing a search through each configuration data source
to find an answer. (More on views later.)

If you know that a configuration value should have a specific type, just
pass that type to get():

int_value = config['number_of_goats'].get(int)

This way, Confuse will either give you an integer or raise a
ConfigTypeError if the user has messed up the configuration. You’re
safe to assume after this call that int_value has the right type. If
the key doesn’t exist in any configuration file, Confuse will raise a
NotFoundError. Together, catching these exceptions (both subclasses
of confuse.ConfigError) lets you painlessly validate the user’s
configuration as you go.

View Theory

The Confuse API is based on the concept of views. You can think of a
view as a place to look in a config file: for example, one view might
say “get the value for key number_of_goats”. Another might say “get
the value at index 8 inside the sequence for key animal_counts”. To
get the value for a given view, you resolve it by calling the
get() method.

This concept separates the specification of a location from the
mechanism for retrieving data from a location. (In this sense, it’s a
little like XPath [http://www.w3.org/TR/xpath/]: you specify a path to data you want and then you
retrieve it.)

Using views, you can write config['animal_counts'][8] and know that
no exceptions will be raised until you call get(), even if the
animal_counts key does not exist. More importantly, it lets you
write a single expression to search many different data sources without
preemptively merging all sources together into a single data structure.

Views also solve an important problem with overriding collections.
Imagine, for example, that you have a dictionary called
deliciousness in your config file that maps food names to tastiness
ratings. If the default configuration gives carrots a rating of 8 and
the user’s config rates them a 10, then clearly
config['deliciousness']['carrots'].get() should return 10. But what
if the two data sources have different sets of vegetables? If the user
provides a value for broccoli and zucchini but not carrots, should
carrots have a default deliciousness value of 8 or should Confuse just
throw an exception? With Confuse’s views, the application gets to decide.

The above expression, config['deliciousness']['carrots'].get(),
returns 8 (falling back on the default). However, you can also write
config['deliciousness'].get(). This expression will cause the
entire user-specified mapping to override the default one, providing a
dict object like {'broccoli': 7, 'zucchini': 9}. As a rule, then,
resolve a view at the same granularity you want config files to override
each other.

Warning

It may appear that calling config.get() would retrieve the entire
configuration at once. However, this will return only the
highest-priority configuration source, masking any lower-priority
values for keys that are not present in the top source. This pitfall is
especially likely when using Command-Line Options or
Environment Variables, which may place an empty configuration
at the top of the stack. A subsequent call to config.get() might
then return no configuration at all.

Validation

We saw above that you can easily assert that a configuration value has a
certain type by passing that type to get(). But sometimes you need
to do more than just type checking. For this reason, Confuse provides a
few methods on views that perform fancier validation or even
conversion:

	as_filename(): Normalize a filename, substituting tildes and
absolute-ifying relative paths. For filenames defined in a config file,
by default the filename is relative to the application’s config directory
(Configuration.config_dir(), as described below). However, if the config
file was loaded with the base_for_paths parameter set to True
(see Manually Specifying Config Files), then a relative path refers
to the directory containing the config file. A relative path from any other
source (e.g., command-line options) is relative to the working directory. For
full control over relative path resolution, use the Filename template
directly (see Filename).

	as_choice(choices): Check that a value is one of the provided
choices. The argument should be a sequence of possible values. If the
sequence is a dict, then this method returns the associated value
instead of the key.

	as_number(): Raise an exception unless the value is of a numeric
type.

	as_pairs(): Get a collection as a list of pairs. The collection
should be a list of elements that are either pairs (i.e., two-element
lists) already or single-entry dicts. This can be helpful because, in
YAML, lists of single-element mappings have a simple syntax (- key:
value) and, unlike real mappings, preserve order.

	as_str_seq(): Given either a string or a list of strings, return a list
of strings. A single string is split on whitespace.

	as_str_expanded(): Expand any environment variables contained in
a string using os.path.expandvars() [https://docs.python.org/library/os.path.html#os.path.expandvars].

For example, config['path'].as_filename() ensures that you get a
reasonable filename string from the configuration. And calling
config['direction'].as_choice(['up', 'down']) will raise a
ConfigValueError unless the direction value is either “up” or
“down”.

Command-Line Options

Arguments to command-line programs can be seen as just another source
for configuration options. Just as options in a user-specific
configuration file should override those from a system-wide config,
command-line options should take priority over all configuration files.

You can use the argparse [http://docs.python.org/dev/library/argparse.html] and optparse [http://docs.python.org/library/optparse.html] modules from the standard
library with Confuse to accomplish this. Just call the set_args
method on any view and pass in the object returned by the command-line
parsing library. Values from the command-line option namespace object
will be added to the overlay for the view in question. For example, with
argparse:

args = parser.parse_args()
config.set_args(args)

Correspondingly, with optparse:

options, args = parser.parse_args()
config.set_args(options)

This call will turn all of the command-line options into a top-level
source in your configuration. The key associated with each option in the
parser will become a key available in your configuration. For example,
consider this argparse script:

config = confuse.Configuration('myapp')
parser = argparse.ArgumentParser()
parser.add_argument('--foo', help='a parameter')
args = parser.parse_args()
config.set_args(args)
print(config['foo'].get())

This will allow the user to override the configured value for key
foo by passing --foo <something> on the command line.

Overriding nested values can be accomplished by passing dots=True and
have dot-delimited properties on the incoming object.

parser.add_argument('--bar', help='nested parameter', dest='foo.bar')
args = parser.parse_args() # args looks like: {'foo.bar': 'value'}
config.set_args(args, dots=True)
print(config['foo']['bar'].get())

set_args works with generic dictionaries too.

args = {
 'foo': {
 'bar': 1
 }
}
config.set_args(args, dots=True)
print(config['foo']['bar'].get())

Note that, while you can use the full power of your favorite
command-line parsing library, you’ll probably want to avoid specifying
defaults in your argparse or optparse setup. This way, Confuse can use
other configuration sources—possibly your
config_default.yaml—to fill in values for unspecified
command-line switches. Otherwise, the argparse/optparse default value
will hide options configured elsewhere.

Environment Variables

Confuse supports using environment variables as another source to provide an
additional layer of configuration. The environment variables to include are
identified by a prefix, which defaults to the uppercased name of your
application followed by an underscore. Matching environment variable names
are first stripped of this prefix and then lowercased to determine the
corresponding configuration option. To load the environment variables for
your application using the default prefix, just call set_env on your
Configuration object. Config values from the environment will then be
added as an overlay at the highest precedence. For example:

export MYAPP_FOO=something

import confuse
config = confuse.Configuration('myapp', __name__)
config.set_env()
print(config['foo'].get())

Nested config values can be overridden by using a separator string in the
environment variable name. By default, double underscores are used as the
separator for nesting, to avoid clashes with config options that contain
single underscores. Note that most shells restrict environment variable names
to alphanumeric and underscore characters, so dots are not a valid separator.

export MYAPP_FOO__BAR=something

import confuse
config = confuse.Configuration('myapp', __name__)
config.set_env()
print(config['foo']['bar'].get())

Both the prefix and the separator can be customized when using set_env.
Note that prefix matching is done to the environment variables prior to
lowercasing, while the separator is matched after lowercasing.

export APPFOO_NESTED_BAR=something

import confuse
config = confuse.Configuration('myapp', __name__)
config.set_env(prefix='APP', sep='_nested_')
print(config['foo']['bar'].get())

For configurations that include lists, use integers starting from 0 as nested
keys to invoke “list conversion.” If any of the sibling nested keys are not
integers or the integers are not sequential starting from 0, then conversion
will not be performed. Nested lists and combinations of nested dicts and lists
are supported.

export MYAPP_FOO__0=first
export MYAPP_FOO__1=second
export MYAPP_FOO__2__BAR__0=nested

import confuse
config = confuse.Configuration('myapp', __name__)
config.set_env()
print(config['foo'].get()) # ['first', 'second', {'bar': ['nested']}]

For consistency with YAML config files, the values of environment variables
are type converted using the same YAML parser used for file-based configs.
This means that numeric strings will be converted to integers or floats, “true”
and “false” will be converted to booleans, and the empty string or “null” will
be converted to None. Setting an environment variable to the empty string
or “null” allows unsetting a config value from a lower-precedence source.

To change the lowercasing and list handling behaviors when loading environment
variables or to enable full YAML parsing of environment variables, you can
initialize an EnvSource configuration source directly.

If you use config overlays from both command-line args and environment
variables, the order of calls to set_args and set_env will
determine the precedence, with the last call having the highest precedence.

Search Paths

Confuse looks in a number of locations for your application’s
configurations. The locations are determined by the platform. For each
platform, Confuse has a list of directories in which it looks for a
directory named after the application. For example, the first search
location on Unix-y systems is $XDG_CONFIG_HOME/AppName for an
application called AppName.

Here are the default search paths for each platform:

	macOS: ~/.config/app and ~/Library/Application Support/app

	Other Unix: ~/.config/app and /etc/app

	Windows: %APPDATA%\app where the APPDATA environment variable falls
back to %HOME%\AppData\Roaming if undefined

Both macOS and other Unix operating sytems also try to use the
XDG_CONFIG_HOME and XDG_CONFIG_DIRS environment variables if set
then search those directories as well.

Users can also add an override configuration directory with an
environment variable. The variable name is the application name in
capitals with “DIR” appended: for an application named AppName, the
environment variable is APPNAMEDIR.

Manually Specifying Config Files

You may want to leverage Confuse’s features without Search Paths.
This can be done by manually specifying the YAML files you want to include,
which also allows changing how relative paths in the file will be resolved:

import confuse
Instantiates config. Confuse searches for a config_default.yaml
config = confuse.Configuration('MyGreatApp', __name__)
Add config items from specified file. Relative path values within the
file are resolved relative to the application's configuration directory.
config.set_file('subdirectory/default_config.yaml')
Add config items from a second file. If some items were already defined,
they will be overwritten (new file precedes the previous ones). With
`base_for_paths` set to True, relative path values in this file will be
resolved relative to the config file's directory (i.e., 'subdirectory').
config.set_file('subdirectory/local_config.yaml', base_for_paths=True)

val = config['foo']['bar'].get(int)

Your Application Directory

Confuse provides a simple helper, Configuration.config_dir(), that
gives you a directory used to store your application’s configuration. If
a configuration file exists in any of the searched locations, then the
highest-priority directory containing a config file is used. Otherwise,
a directory is created for you and returned. So you can always expect
this method to give you a directory that actually exists.

As an example, you may want to migrate a user’s settings to Confuse from
an older configuration system such as ConfigParser [http://docs.python.org/library/configparser.html]. Just do something
like this:

config_filename = os.path.join(config.config_dir(),
 confuse.CONFIG_FILENAME)
with open(config_filename, 'w') as f:
 yaml.dump(migrated_config, f)

Dynamic Updates

Occasionally, a program will need to modify its configuration while it’s
running. For example, an interactive prompt from the user might cause
the program to change a setting for the current execution only. Or the
program might need to add a derived configuration value that the user
doesn’t specify.

To facilitate this, Confuse lets you assign to view objects using
ordinary Python assignment. Assignment will add an overlay source that
precedes all other configuration sources in priority. Here’s an example
of programmatically setting a configuration value based on a DEBUG
constant:

if DEBUG:
 config['verbosity'] = 100
...
my_logger.setLevel(config['verbosity'].get(int))

This example allows the constant to override the default verbosity
level, which would otherwise come from a configuration file.

Assignment works by creating a new “source” for configuration data at
the top of the stack. This new source takes priority over all other,
previously-loaded sources. You can cause this explicitly by calling the
set() method on any view. A related method, add(), works
similarly but instead adds a new lowest-priority source to the bottom
of the stack. This can be used to provide defaults for options that may
be overridden by previously-loaded configuration files.

YAML Tweaks

Confuse uses the PyYAML [http://pyyaml.org/] module to parse YAML configuration files. However, it
deviates very slightly from the official YAML specification to provide a few
niceties suited to human-written configuration files. Those tweaks are:

	All strings are returned as Python Unicode objects.

	YAML maps are parsed as Python OrderedDict [http://docs.python.org/2/library/collections.html#collections.OrderedDict] objects. This means that you
can recover the order that the user wrote down a dictionary.

	Bare strings can begin with the % character. In stock PyYAML, this will throw
a parse error.

To produce a YAML string reflecting a configuration, just call
config.dump(). This does not cleanly round-trip YAML,
but it does play some tricks to preserve comments and spacing in the original
file.

Custom YAML Loaders

You can also specify your own PyYAML [http://pyyaml.org/] Loader object to parse YAML
files. Supply the loader parameter to a Configuration constructor,
like this:

config = confuse.Configuration("name", loader=yaml.Loaded)

To imbue a loader with Confuse’s special parser overrides, use its
add_constructors method:

class MyLoader(yaml.Loader):
 ...
confuse.Loader.add_constructors(MyLoader)
config = confuse.Configuration("name", loader=MyLoader)

Configuring Large Programs

One problem that must be solved by a configuration system is the issue
of global configuration for complex applications. In a large program
with many components and many config options, it can be unwieldy to
explicitly pass configuration values from component to component. You
quickly end up with monstrous function signatures with dozens of keyword
arguments, decreasing code legibility and testability.

In such systems, one option is to pass a single Configuration object
through to each component. To avoid even this, however, it’s sometimes
appropriate to use a little bit of shared global state. As evil as
shared global state usually is, configuration is (in my opinion) one
valid use: since configuration is mostly read-only, it’s relatively
unlikely to cause the sorts of problems that global values sometimes
can. And having a global repository for configuration option can vastly
reduce the amount of boilerplate threading-through needed to explicitly
pass configuration from call to call.

To use global configuration, consider creating a configuration object in
a well-known module (say, the root of a package). But since this object
will be initialized at module load time, Confuse provides a LazyConfig
object that loads your configuration files on demand instead of when the
object is constructed. (Doing complicated stuff like parsing YAML at
module load time is generally considered a Bad Idea.)

Global state can cause problems for unit testing. To alleviate this,
consider adding code to your test fixtures (e.g., setUp [http://docs.python.org/2/library/unittest.html#unittest.TestCase.setUp] in the
unittest [http://docs.python.org/2/library/unittest.html] module) that clears out the global configuration before each
test is run. Something like this:

config.clear()
config.read(user=False)

These lines will empty out the current configuration and then re-load
the defaults (but not the user’s configuration files). Your tests can
then modify the global configuration values without affecting other
tests since these modifications will be cleared out before the next test
runs.

Redaction

You can also mark certain configuration values as “sensitive” and avoid
including them in output. Just set the redact flag:

config['key'].redact = True

Then flatten or dump the configuration like so:

config.dump(redact=True)

The resulting YAML will contain “key: REDACTED” instead of the original data.

Template Examples

These examples demonstrate how the confuse templates work to validate
configuration values.

Sequence

A Sequence template allows validation of a sequence of configuration items
that all must match a subtemplate. The items in the sequence can be simple
values or more complex objects, as defined by the subtemplate. When the view
is defined in multiple sources, the highest priority source will override the
entire list of items, rather than appending new items to the list from lower
sources. If the view is not defined in any source of the configuration, an
empty list will be returned.

As an example of using the Sequence template, consider a configuration that
includes a list of servers, where each server is required to have a host string
and an optional port number that defaults to 80. For this example, an initial
configuration file named servers_example.yaml has the following contents:

servers:
 - host: one.example.com
 - host: two.example.com
 port: 8000
 - host: three.example.com
 port: 8080

Validation of this configuration could be performed like this:

>>> import confuse
>>> import pprint
>>> source = confuse.YamlSource('servers_example.yaml')
>>> config = confuse.RootView([source])
>>> template = {
... 'servers': confuse.Sequence({
... 'host': str,
... 'port': 80,
... }),
... }
>>> valid_config = config.get(template)
>>> pprint.pprint(valid_config)
{'servers': [{'host': 'one.example.com', 'port': 80},
 {'host': 'two.example.com', 'port': 8000},
 {'host': 'three.example.com', 'port': 8080}]}

The list of items in the initial configuration can be overridden by setting a
higher priority source. Continuing the previous example:

>>> config.set({
... 'servers': [
... {'host': 'four.example.org'},
... {'host': 'five.example.org', 'port': 9000},
...],
... })
>>> updated_config = config.get(template)
>>> pprint.pprint(updated_config)
{'servers': [{'host': 'four.example.org', 'port': 80},
 {'host': 'five.example.org', 'port': 9000}]}

If the requested view is missing, Sequence returns an empty list:

>>> config.clear()
>>> config.get(template)
{'servers': []}

However, if an item within the sequence does not match the subtemplate
provided to Sequence, then an error will be raised:

>>> config.set({
... 'servers': [
... {'host': 'bad_port.example.net', 'port': 'default'}
...]
... })
>>> try:
... config.get(template)
... except confuse.ConfigError as err:
... print(err)
...
servers#0.port: must be a number

Note

A python list is not the shortcut for defining a Sequence template but
will instead produce a OneOf template. For example,
config.get([str]) is equivalent to config.get(confuse.OneOf([str]))
and not config.get(confuse.Sequence(str)).

MappingValues

A MappingValues template allows validation of a mapping of configuration
items where the keys can be arbitrary but all the values need to match a
subtemplate. Use cases include simple user-defined key:value pairs or larger
configuration blocks that all follow the same structure, but where the keys
naming each block are user-defined. In addition, individual items in the
mapping can be overridden and new items can be added by higher priority
configuration sources. This is in contrast to the Sequence template, in
which a higher priority source overrides the entire list of configuration items
provided by a lower source.

In the following example, a hypothetical todo list program can be configured
with user-defined colors and category labels. Colors are required to be in hex
format. For each category, a description is required and a priority level is
optional, with a default value of 0. An initial configuration file named
todo_example.yaml has the following contents:

colors:
 red: '#FF0000'
 green: '#00FF00'
 blue: '#0000FF'
categories:
 default:
 description: Things to do
 high:
 description: These are important
 priority: 50
 low:
 description: Will get to it eventually
 priority: -10

Validation of this configuration could be performed like this:

>>> import confuse
>>> import pprint
>>> source = confuse.YamlSource('todo_example.yaml')
>>> config = confuse.RootView([source])
>>> template = {
... 'colors': confuse.MappingValues(
... confuse.String(pattern='#[0-9a-fA-F]{6,6}')
...),
... 'categories': confuse.MappingValues({
... 'description': str,
... 'priority': 0,
... }),
... }
>>> valid_config = config.get(template)
>>> pprint.pprint(valid_config)
{'categories': {'default': {'description': 'Things to do', 'priority': 0},
 'high': {'description': 'These are important', 'priority': 50},
 'low': {'description': 'Will get to it eventually',
 'priority': -10}},
 'colors': {'blue': '#0000FF', 'green': '#00FF00', 'red': '#FF0000'}}

Items in the initial configuration can be overridden and the mapping can be
extended by setting a higher priority source. Continuing the previous example:

>>> config.set({
... 'colors': {
... 'green': '#008000',
... 'orange': '#FFA500',
... },
... 'categories': {
... 'urgent': {
... 'description': 'Must get done now',
... 'priority': 100,
... },
... 'high': {
... 'description': 'Important, but not urgent',
... 'priority': 20,
... },
... },
... })
>>> updated_config = config.get(template)
>>> pprint.pprint(updated_config)
{'categories': {'default': {'description': 'Things to do', 'priority': 0},
 'high': {'description': 'Important, but not urgent',
 'priority': 20},
 'low': {'description': 'Will get to it eventually',
 'priority': -10},
 'urgent': {'description': 'Must get done now',
 'priority': 100}},
 'colors': {'blue': '#0000FF',
 'green': '#008000',
 'orange': '#FFA500',
 'red': '#FF0000'}}

If the requested view is missing, MappingValues returns an empty dict:

>>> config.clear()
>>> config.get(template)
{'colors': {}, 'categories': {}}

However, if an item within the mapping does not match the subtemplate
provided to MappingValues, then an error will be raised:

>>> config.set({
... 'categories': {
... 'no_description': {
... 'priority': 10,
... },
... },
... })
>>> try:
... config.get(template)
... except confuse.ConfigError as err:
... print(err)
...
categories.no_description.description not found

Filename

A Filename template validates a string as a filename, which is normalized
and returned as an absolute, tilde-free path. By default, relative path values
that are provided in config files are resolved relative to the application’s
configuration directory, as returned by Configuration.config_dir(), while
relative paths from command-line options are resolved from the current working
directory. However, these default relative path behaviors can be changed using
the cwd, relative_to, in_app_dir, or in_source_dir parameters
to the Filename template. In addition, relative path resolution for an
entire source file can be changed by creating a ConfigSource with the
base_for_paths parameter set to True. Setting the behavior at the
source-level can be useful when all Filename templates should be relative
to the source. The template-level parameters provide more fine-grained control.

While the directory used for resolving relative paths can be controlled, the
Filename template should not be used to guarantee that a file is contained
within a given directory, because an absolute path may be provided and will not
be subject to resolution. In addition, Filename validation only ensures
that the filename is a valid path on the platform where the application is
running, not that the file or any parent directories exist or could be created.

Note

Running the example below will create the application config directory
~/.config/ExampleApp/ on MacOS and Unix machines or
%APPDATA%\ExampleApp\ on Windows machines. The filenames in the sample
output will also be different on your own machine because the paths to
the config files and the current working directory will be different.

For this example, we will validate a configuration with filenames that should
be resolved as follows:

	library: a filename that should always be resolved relative to the
application’s config directory

	media_dir: a directory that should always be resolved relative to the
source config file that provides that value

	photo_dir and video_dir: subdirectories that should be resolved
relative of the value of media_dir

	temp_dir: a directory that should be resolved relative to /tmp/

	log: a filename that follows the default Filename template behavior

The initial user config file will be at ~/.config/ExampleApp/config.yaml,
where it will be discovered automatically using the Search Paths, and
has the following contents:

library: library.db
media_dir: media
photo_dir: my_photos
video_dir: my_videos
temp_dir: example_tmp
log: example.log

Validation of this initial user configuration could be performed as follows:

>>> import confuse
>>> import pprint
>>> config = confuse.Configuration('ExampleApp', __name__) # Loads user config
>>> print(config.config_dir()) # Application config directory
/home/user/.config/ExampleApp
>>> template = {
... 'library': confuse.Filename(in_app_dir=True),
... 'media_dir': confuse.Filename(in_source_dir=True),
... 'photo_dir': confuse.Filename(relative_to='media_dir'),
... 'video_dir': confuse.Filename(relative_to='media_dir'),
... 'temp_dir': confuse.Filename(cwd='/tmp'),
... 'log': confuse.Filename(),
... }
>>> valid_config = config.get(template)
>>> pprint.pprint(valid_config)
{'library': '/home/user/.config/ExampleApp/library.db',
 'log': '/home/user/.config/ExampleApp/example.log',
 'media_dir': '/home/user/.config/ExampleApp/media',
 'photo_dir': '/home/user/.config/ExampleApp/media/my_photos',
 'temp_dir': '/tmp/example_tmp',
 'video_dir': '/home/user/.config/ExampleApp/media/my_videos'}

Because the user configuration file config.yaml was in the application’s
configuration directory of /home/user/.config/ExampleApp/, all of the
filenames are below /home/user/.config/ExampleApp/ except for temp_dir,
whose template used the cwd parameter. However, if the following YAML file
is then loaded from /var/tmp/example/config.yaml as a higher-level source,
some of the paths will no longer be relative to the application config
directory:

library: new_library.db
media_dir: new_media
photo_dir: new_photos
video_dir: my_videos # Not overridden
temp_dir: ./new_example_tmp
log: new_example.log

Continuing the example code from above:

>>> config.set_file('/var/tmp/example/config.yaml')
>>> updated_config = config.get(template)
>>> pprint.pprint(updated_config)
{'library': '/home/user/.config/ExampleApp/new_library.db',
 'log': '/home/user/.config/ExampleApp/new_example.log',
 'media_dir': '/var/tmp/example/new_media',
 'photo_dir': '/var/tmp/example/new_media/new_photos',
 'temp_dir': '/tmp/new_example_tmp',
 'video_dir': '/var/tmp/example/new_media/my_videos'}

Now, the media_dir and its subdirectories are relative to the directory
containing the new source file, because the media_dir template used the
in_source_dir parameter. However, log remains in the application config
directory because it uses the default Filename template behavior. The base
directories for the library and temp_dir items are also not affected.

If the previous YAML file is instead loaded with the base_for_paths
parameter set to True, then a default Filename template will use that
config file’s directory as the base for resolving relative paths:

>>> config.set_file('/var/tmp/example/config.yaml', base_for_paths=True)
>>> updated_config = config.get(template)
>>> pprint.pprint(updated_config)
{'library': '/home/user/.config/ExampleApp/new_library.db',
 'log': '/var/tmp/example/new_example.log',
 'media_dir': '/var/tmp/example/new_media',
 'photo_dir': '/var/tmp/example/new_media/new_photos',
 'temp_dir': '/tmp/new_example_tmp',
 'video_dir': '/var/tmp/example/new_media/my_videos'}

The filename for log is now within the directory containing the new source
file. However, the directory for the library file has not changed since its
template uses the in_app_dir parameter, which takes precedence over the
source’s base_for_paths setting. The template-level cwd parameter, used
with temp_dir, also takes precedence over the source setting.

For configuration values set from command-line options, relative paths will be
resolved from the current working directory by default, but the cwd,
relative_to, and in_app_dir template parameters alter that behavior.
Continuing the example code from above, command-line options are mimicked here
by splitting a mock command line string and parsing it with argparse:

>>> import os
>>> print(os.getcwd()) # Current working directory
/home/user
>>> import argparse
>>> parser = argparse.ArgumentParser()
>>> parser.add_argument('--library')
>>> parser.add_argument('--media_dir')
>>> parser.add_argument('--photo_dir')
>>> parser.add_argument('--temp_dir')
>>> parser.add_argument('--log')
>>> cmd_line=('--library cmd_line_library --media_dir cmd_line_media '
... '--photo_dir cmd_line_photo --temp_dir cmd_line_tmp '
... '--log cmd_line_log')
>>> args = parser.parse_args(cmd_line.split())
>>> config.set_args(args)
>>> config_with_cmdline = config.get(template)
>>> pprint.pprint(config_with_cmdline)
{'library': '/home/user/.config/ExampleApp/cmd_line_library',
 'log': '/home/user/cmd_line_log',
 'media_dir': '/home/user/cmd_line_media',
 'photo_dir': '/home/user/cmd_line_media/cmd_line_photo',
 'temp_dir': '/tmp/cmd_line_tmp',
 'video_dir': '/home/user/cmd_line_media/my_videos'}

Now the log and media_dir paths are relative to the current working
directory of /home/user, while the photo_dir and video_dir paths
remain relative to the updated media_dir path. The library and
temp_dir paths are still resolved as before, because those templates used
in_app_dir and cwd, respectively.

If a configuration value is provided as an absolute path, the path will be
normalized but otherwise unchanged. Here is an example of overridding earlier
values with absolute paths:

>>> config.set({
... 'library': '~/home_library.db',
... 'media_dir': '/media',
... 'video_dir': '/video_not_under_media',
... 'temp_dir': '/var/./remove_me/..//tmp',
... 'log': '/var/log/example.log',
... })
>>> absolute_config = config.get(template)
>>> pprint.pprint(absolute_config)
{'library': '/home/user/home_library.db',
 'log': '/var/log/example.log',
 'media_dir': '/media',
 'photo_dir': '/media/cmd_line_photo',
 'temp_dir': '/var/tmp',
 'video_dir': '/video_not_under_media'}

The paths for library and temp_dir have been normalized, but are not
impacted by their template parameters. Since photo_dir was not overridden,
the previous relative path value is now being resolved from the new
media_dir absolute path. However, the video_dir was set to an absolute
path and is no longer a subdirectory of media_dir.

Path

A Path template works the same as a Filename template, but returns
a pathlib.Path object instead of a string. Using the same initial example
as above for Filename but with Path templates gives the following:

>>> import confuse
>>> import pprint
>>> config = confuse.Configuration('ExampleApp', __name__)
>>> print(config.config_dir()) # Application config directory
/home/user/.config/ExampleApp
>>> template = {
... 'library': confuse.Path(in_app_dir=True),
... 'media_dir': confuse.Path(in_source_dir=True),
... 'photo_dir': confuse.Path(relative_to='media_dir'),
... 'video_dir': confuse.Path(relative_to='media_dir'),
... 'temp_dir': confuse.Path(cwd='/tmp'),
... 'log': confuse.Path(),
... }
>>> valid_config = config.get(template)
>>> pprint.pprint(valid_config)
{'library': PosixPath('/home/user/.config/ExampleApp/library.db'),
 'log': PosixPath('/home/user/.config/ExampleApp/example.log'),
 'media_dir': PosixPath('/home/user/.config/ExampleApp/media'),
 'photo_dir': PosixPath('/home/user/.config/ExampleApp/media/my_photos'),
 'temp_dir': PosixPath('/tmp/example_tmp'),
 'video_dir': PosixPath('/home/user/.config/ExampleApp/media/my_videos')}

Optional

While many templates like Integer and String can be configured to
return a default value if the requested view is missing, validation with these
templates will fail if the value is left blank in the YAML file or explicitly
set to null in YAML (ie, None in python). The Optional template
can be used with other templates to allow its subtemplate to accept null
as valid and return a default value. The default behavior of Optional
allows the requested view to be missing, but this behavior can be changed by
passing allow_missing=False, in which case the view must be present but its
value can still be null. In all cases, any value other than null will
be passed to the subtemplate for validation, and an appropriate ConfigError
will be raised if validation fails. Optional can also be used with more
complex templates like MappingTemplate to make entire sections of the
configuration optional.

Consider a configuration where log can be set to a filename to enable
logging to that file or set to null or not included in the configuration to
indicate logging to the console. All of the following are valid configurations
using the Optional template with Filename as the subtemplate:

>>> import sys
>>> import confuse
>>> def get_log_output(config):
... output = config['log'].get(confuse.Optional(confuse.Filename()))
... if output is None:
... return sys.stderr
... return output
...
>>> config = confuse.RootView([])
>>> config.set({'log': '/tmp/log.txt'}) # `log` set to a filename
>>> get_log_output(config)
'/tmp/log.txt'
>>> config.set({'log': None}) # `log` set to None (ie, null in YAML)
>>> get_log_output(config)
<_io.TextIOWrapper name='<stderr>' mode='w' encoding='UTF-8'>
>>> config.clear() # Clear config so that `log` is missing
>>> get_log_output(config)
<_io.TextIOWrapper name='<stderr>' mode='w' encoding='UTF-8'>

However, validation will still fail with Optional if a value is given that
is invalid for the subtemplate:

>>> config.set({'log': True})
>>> try:
... get_log_output(config)
... except confuse.ConfigError as err:
... print(err)
...
log: must be a filename, not bool

And without wrapping the Filename subtemplate in Optional, null
values are not valid:

>>> config.set({'log': None})
>>> try:
... config['log'].get(confuse.Filename())
... except confuse.ConfigError as err:
... print(err)
...
log: must be a filename, not NoneType

If a program wants to require an item to be present in the configuration, while
still allowing null to be valid, pass allow_missing=False when
creating the Optional template:

>>> def get_log_output_no_missing(config):
... output = config['log'].get(confuse.Optional(confuse.Filename(),
... allow_missing=False))
... if output is None:
... return sys.stderr
... return output
...
>>> config.set({'log': None}) # `log` set to None is still OK...
>>> get_log_output_no_missing(config)
<_io.TextIOWrapper name='<stderr>' mode='w' encoding='UTF-8'>
>>> config.clear() # but `log` missing now raises an error
>>> try:
... get_log_output_no_missing(config)
... except confuse.ConfigError as err:
... print(err)
...
log not found

The default value returned by Optional can be set explicitly by passing a
value to its default parameter. However, if no explicit default is passed
to Optional and the subtemplate has a default value defined, then
Optional will return the subtemplate’s default value. For subtemplates that
do not define default values, like MappingTemplate, None will be
returned as the default unless an explicit default is provided.

In the following example, Optional is used to make an Integer template
more lenient, allowing blank values to validate. In addition, the entire
extra_config block can be left out without causing validation errors. If
we have a file named optional.yaml with the following contents:

favorite_number: # No favorite number provided, but that's OK
This part of the configuration is optional. Uncomment to include.
extra_config:
fruit: apple
number: 10

Then the configuration can be validated as follows:

>>> import confuse
>>> source = confuse.YamlSource('optional.yaml')
>>> config = confuse.RootView([source])
>>> # The following `Optional` templates are all equivalent
... config['favorite_number'].get(confuse.Optional(5))
5
>>> config['favorite_number'].get(confuse.Optional(confuse.Integer(5)))
5
>>> config['favorite_number'].get(confuse.Optional(int, default=5))
5
>>> # But a default passed to `Optional` takes precedence and can be any type
... config['favorite_number'].get(confuse.Optional(5, default='five'))
'five'
>>> # `Optional` with `MappingTemplate` returns `None` by default
... extra_config = config['extra_config'].get(confuse.Optional(
... {'fruit': str, 'number': int},
...))
>>> print(extra_config is None)
True
>>> # But any default value can be provided, like an empty dict...
... config['extra_config'].get(confuse.Optional(
... {'fruit': str, 'number': int},
... default={},
...))
{}
>>> # or a dict with default values
... config['extra_config'].get(confuse.Optional(
... {'fruit': str, 'number': int},
... default={'fruit': 'orange', 'number': 3},
...))
{'fruit': 'orange', 'number': 3}

Without the Optional template wrapping the Integer, the blank value
in the YAML file will cause an error:

>>> try:
... config['favorite_number'].get(5)
... except confuse.ConfigError as err:
... print(err)
...
favorite_number: must be a number

If the extra_config for this example configuration is supplied, it must
still match the subtemplate. Therefore, this will fail:

>>> config.set({'extra_config': {}})
>>> try:
... config['extra_config'].get(confuse.Optional(
... {'fruit': str, 'number': int},
...))
... except confuse.ConfigError as err:
... print(err)
...
extra_config.fruit not found

But this override of the example configuration will validate:

>>> config.set({'extra_config': {'fruit': 'banana', 'number': 1}})
>>> config['extra_config'].get(confuse.Optional(
... {'fruit': str, 'number': int},
...))
{'fruit': 'banana', 'number': 1}

Changelog

v2.0.0

	Drop support for versions of Python below 3.6.

v1.7.0

	Add support for reading configuration values from environment variables
(see EnvSource).

	Resolve a possible race condition when creating configuration directories.

v1.6.0

	A new Configuration.reload method makes it convenient to reload and
re-parse all YAML files from the file system.

v1.5.0

	A new MappingValues template behaves like Sequence but for mappings with
arbitrary keys.

	A new Optional template allows other templates to be null.

	Filename templates now have an option to resolve relative to a specific
directory. Also, configuration sources now have a corresponding global
option to resolve relative to the base configuration directory instead of
the location of the specific configuration file.

	There is a better error message for Sequence templates when the data from
the configuration is not a sequence.

v1.4.0

	pathlib.PurePath objects can now be converted to Path templates.

	AttrDict now properly supports (over)writing attributes via dot notation.

v1.3.0

	Break up the confuse module into a package. (All names should still be
importable from confuse.)

	When using None as a template, the result is a value whose default is
None. Previously, this was equivalent to leaving the key off entirely,
i.e., a template with no default. To get the same effect now, use
confuse.REQUIRED in the template.

v1.2.0

	float values (like 4.2) can now be used in templates (just like
42 works as an int template).

	The Filename and Path templates now correctly accept default values.

	It’s now possible to provide custom PyYAML Loader objects for
parsing config files.

v1.1.0

	A new Path template produces a pathlib [https://docs.python.org/3/library/pathlib.html] Path object.

	Drop support for Python 3.4 (following in the footsteps of PyYAML).

	String templates support environment variable expansion.

v1.0.0

The first stable release, and the first that beets [https://beets.io] depends on externally.

API Documentation

This part of the documentation covers the interfaces used to develop with confuse.

Core

Exceptions

Sources

Templates

Utility

YAML Utility

Index

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Confuse: painless YAML config files

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

